Project 6: Lazy Stream Library
Project 6: Lazy Stream Library
Build a lazy evaluation library with infinite data structures and stream fusion.
Quick Reference
| Attribute | Value |
|---|---|
| Difficulty | Advanced |
| Time Estimate | 2 Weeks |
| Language | TypeScript |
| Prerequisites | Projects 1-3, Understanding of closures |
| Key Topics | Lazy Evaluation, Thunks, Infinite Streams, Fusion |
1. Learning Objectives
By completing this project, you will:
- Understand the difference between eager and lazy evaluation
- Implement lazy values using thunks and memoization
- Build infinite data structures (streams)
- Implement lazy list operations (map, filter, take, drop)
- Understand and implement stream fusion
- Learn when lazy evaluation helps and hurts performance
- See connections to generators and iterators
2. Theoretical Foundation
2.1 Core Concepts
Eager vs Lazy Evaluation
Eager (strict) evaluation computes values immediately:
// Eager: All million items processed before slice
const result = [1, 2, 3, ...millionMoreNumbers]
.map(x => x * 2) // Process all million
.filter(x => x > 100) // Check all million
.slice(0, 10); // Only need 10!
Lazy evaluation defers computation until needed:
// Lazy: Only compute what's needed for 10 results
const result = lazyRange(1, Infinity)
.map(x => x * 2) // Not computed yet
.filter(x => x > 100) // Not computed yet
.take(10) // Now compute ~55 values
.toArray();
Visual comparison:
Eager Evaluation Timeline:
Define map(ร2) filter(>100) take(10)
โ โ โ โ
[1..1M] โ [2..2M] โ [filtered...] โ [10 items]
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
All million items processed upfront
Lazy Evaluation Timeline:
Define map(ร2) filter(>100) take(10)
โ โ โ โ
[recipe] [recipe] [recipe] [execute!]
โ
Process ~55 items
โ
[10 items]
Thunks: Delayed Computation
A thunk is a function with no arguments that wraps a computation:
// Eager: Computed immediately
const eager = 1 + 2; // 3
// Lazy: Wrapped in thunk
const lazy = () => 1 + 2; // Function, not computed
lazy(); // Now compute: 3
Thunks enable lazy evaluation:
// Lazy value type
type Lazy<T> = {
get: () => T; // Force evaluation
isEvaluated: boolean;
};
// Create lazy value
const lazy = <T>(thunk: () => T): Lazy<T> => {
let computed = false;
let value: T;
return {
get isEvaluated() { return computed; },
get() {
if (!computed) {
value = thunk(); // Evaluate once
computed = true;
}
return value;
}
};
};
// Usage
const expensive = lazy(() => {
console.log("Computing...");
return fibonacci(40);
});
console.log(expensive.isEvaluated); // false
console.log(expensive.get()); // "Computing...", then result
console.log(expensive.isEvaluated); // true
console.log(expensive.get()); // Same result, no recomputation
Lazy Lists / Streams
A lazy list is a linked list where the tail is a thunk:
// Eager list (all elements exist)
type EagerList<A> = Nil | Cons<A>;
interface Cons<A> { head: A; tail: EagerList<A>; }
// Lazy list (tail computed on demand)
type LazyList<A> = Nil | LazyCons<A>;
interface LazyCons<A> {
head: A;
tail: Lazy<LazyList<A>>; // Thunk!
}
This enables infinite structures:
// Infinite list of natural numbers
const naturals = (n: number): LazyList<number> => ({
head: n,
tail: lazy(() => naturals(n + 1)) // Computed only when accessed
});
const nums = naturals(0); // 0, 1, 2, 3, ...
nums.head; // 0
nums.tail.get().head; // 1 (now computed)
nums.tail.get().tail.get().head; // 2
Lazy Operations
// Map: Transform each element (lazily)
const map = <A, B>(f: (a: A) => B) => (list: LazyList<A>): LazyList<B> => {
if (isNil(list)) return nil;
return {
head: f(list.head),
tail: lazy(() => map(f)(list.tail.get()))
};
};
// Filter: Keep elements matching predicate (lazily)
const filter = <A>(pred: (a: A) => boolean) => (list: LazyList<A>): LazyList<A> => {
if (isNil(list)) return nil;
if (pred(list.head)) {
return {
head: list.head,
tail: lazy(() => filter(pred)(list.tail.get()))
};
}
return filter(pred)(list.tail.get()); // Skip, continue
};
// Take: Get first n elements (forces evaluation)
const take = <A>(n: number) => (list: LazyList<A>): A[] => {
if (n <= 0 || isNil(list)) return [];
return [list.head, ...take(n - 1)(list.tail.get())];
};
Stream Fusion
When you chain operations, each creates an intermediate structure:
// Without fusion: Three intermediate arrays
[1,2,3].map(x => x * 2).filter(x => x > 2).map(x => x + 1);
// [2,4,6] โ [4,6] โ [5,7]
// With fusion: Single pass
// Combine into: x => (x * 2) > 2 ? ((x * 2) + 1) : skip
Stream fusion merges multiple operations into a single pass:
Before Fusion:
list โ map(ร2) โ [2,4,6] โ filter(>2) โ [4,6] โ map(+1) โ [5,7]
โโโ pass 1 โโโ โโโ pass 2 โโโโโ โโโ pass 3 โโโ
After Fusion:
list โ fused transformer โ [5,7]
โโโ single pass โโโ
Implementation uses a โtransducerโ pattern:
type Transducer<A, B> = <R>(
reducer: (acc: R, val: B) => R
) => (acc: R, val: A) => R;
const mapT = <A, B>(f: (a: A) => B): Transducer<A, B> =>
(reducer) => (acc, val) => reducer(acc, f(val));
const filterT = <A>(pred: (a: A) => boolean): Transducer<A, A> =>
(reducer) => (acc, val) => pred(val) ? reducer(acc, val) : acc;
// Compose transducers
const comp = <A, B, C>(t1: Transducer<A, B>, t2: Transducer<B, C>): Transducer<A, C> =>
(reducer) => t1(t2(reducer));
2.2 Why This Matters
Memory Efficiency:
- Process data larger than RAM
- No intermediate arrays
Performance:
- Only compute whatโs needed
- Fusion reduces passes
Expressiveness:
- Work with infinite data
- Separation of concerns: describe what, not when
In Real Applications:
- Generators: JavaScriptโs
function*uses lazy evaluation - RxJS: Observables are lazy streams
- Big Data: Sparkโs lazy transformations
2.3 Historical Context
- 1970s: Lazy evaluation in research languages
- 1987: Haskell makes lazy evaluation default
- 1998: โDeforestationโ paper on fusion
- 2000s: Stream libraries in Java, Scala
- 2015: TC39 iterators and generators
- Now: Transducers in Clojure, Ramda
2.4 Common Misconceptions
โLazy is always fasterโ
- Reality: Lazy adds overhead; best for early termination or infinite data
โThunks are memoized automaticallyโ
- Reality: You must implement memoization explicitly
โJavaScript is eager, so this doesnโt applyโ
- Reality: Generators are lazy; you can implement lazy structures
3. Project Specification
3.1 What You Will Build
A lazy evaluation library with:
Lazy<T>type for delayed computation with memoizationLazyList<T>for lazy sequences- Infinite stream generators
- Lazy operations (map, filter, flatMap, take, drop)
- Stream fusion via transducers
- Utilities for integration with iterators
3.2 Functional Requirements
- Lazy Values:
lazy(thunk): Create lazy valueforce(lazy): Evaluate and get valueisEvaluated(lazy): Check if evaluatedmap(lazy, fn): Transform lazy value
- Lazy List Construction:
empty: Empty listcons(head, tail): Prepend elementfrom(array): From eager arrayrange(start, end?): Numeric range (possibly infinite)iterate(seed, fn): Repeated applicationrepeat(value): Infinite repetitioncycle(list): Infinite cycle
- Lazy Operations:
map(fn): Transform elementsfilter(pred): Keep matching elementsflatMap(fn): Map and flattentake(n): First n elementsdrop(n): Skip first n elementstakeWhile(pred): Take while predicate truedropWhile(pred): Drop while predicate truezip(other): Pair with another streamzipWith(fn, other): Combine with function
- Consumers (Force Evaluation):
toArray(): Convert to arrayforEach(fn): Iterate with side effectreduce(fn, initial): Fold to single valuefind(pred): Find first matchevery(pred): All match predicatesome(pred): Any matches predicate
- Stream Fusion:
- Transducer composition
- Automatic fusion of map/filter chains
transduce(transducer, initial): Apply fused operations
3.3 Non-Functional Requirements
- Memory: Handle very long (million+ element) streams
- Stack Safety: No stack overflow on deep operations
- Performance: Fusion should improve benchmarks
- Type Safety: Full generics, inferred types
3.4 Example Usage / Output
// Infinite stream of natural numbers
const naturals = range(0); // 0, 1, 2, 3, ...
// Lazy transformations (no computation yet)
const result = naturals
.map(x => x * x) // Squares
.filter(x => x % 2 === 0) // Even only
.take(5); // First 5
// Force evaluation
console.log(result.toArray()); // [0, 4, 16, 36, 64]
// Fibonacci sequence
const fibs = iterate([0, 1], ([a, b]) => [b, a + b])
.map(([a, _]) => a);
console.log(fibs.take(10).toArray());
// [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
// Find in infinite stream
const firstPrimeOver1000 = naturals
.filter(isPrime)
.dropWhile(x => x <= 1000)
.head();
console.log(firstPrimeOver1000); // 1009
// Stream fusion
const fused = LazyList.from([1, 2, 3, 4, 5])
.pipe(
compose(
map(x => x * 2),
filter(x => x > 4),
map(x => x + 1)
)
)
.toArray();
// Single pass instead of three!
console.log(fused); // [7, 9, 11]
// Working with iterators
const gen = function*() {
yield 1; yield 2; yield 3;
};
const fromGen = LazyList.fromIterator(gen());
console.log(fromGen.map(x => x * 10).toArray()); // [10, 20, 30]
4. Solution Architecture
4.1 High-Level Design
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Lazy Stream Library โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Lazy<T> โ โ
โ โ Memoized thunk for delayed computation โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ LazyList<T> โ โ
โ โ Nil | Cons(head: T, tail: Lazy<LazyList<T>>) โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Lazy Operations โ โ
โ โ map, filter, flatMap, take, drop, zip โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Transducers โ โ
โ โ Composable transformers for fusion โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Consumers โ โ
โ โ toArray, reduce, forEach, find โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
4.2 Key Components
| Component | Responsibility | Key Decisions |
|---|---|---|
Lazy<T> |
Memoized thunk | Object with getter |
LazyList<T> |
Lazy linked list | Union with Nil |
| Operations | Transform lazily | Return new LazyList |
| Transducers | Enable fusion | Reducer transformers |
| Consumers | Force evaluation | Iterate/accumulate |
4.3 Data Structures
// Memoized lazy value
interface Lazy<T> {
readonly isEvaluated: boolean;
force(): T;
}
// Lazy list - discriminated union
type LazyList<A> = Nil | Cons<A>;
interface Nil {
readonly _tag: 'Nil';
}
interface Cons<A> {
readonly _tag: 'Cons';
readonly head: A;
readonly tail: Lazy<LazyList<A>>;
}
// Transducer type
type Reducer<A, R> = (acc: R, val: A) => R;
type Transducer<A, B> = <R>(reducer: Reducer<B, R>) => Reducer<A, R>;
// Stream type (alternative implementation)
interface Stream<A> {
map<B>(f: (a: A) => B): Stream<B>;
filter(pred: (a: A) => boolean): Stream<A>;
take(n: number): Stream<A>;
toArray(): A[];
// ... more methods
}
4.4 Algorithm Overview
Lazy Map:
const map = <A, B>(f: (a: A) => B) => (list: LazyList<A>): LazyList<B> => {
if (list._tag === 'Nil') return nil;
return cons(
f(list.head),
lazy(() => map(f)(list.tail.force()))
);
};
Take (Force Evaluation):
const take = <A>(n: number) => (list: LazyList<A>): A[] => {
const result: A[] = [];
let current = list;
let count = n;
while (count > 0 && current._tag === 'Cons') {
result.push(current.head);
current = current.tail.force();
count--;
}
return result;
};
Transducer Composition:
const compose = <A, B, C>(
t1: Transducer<A, B>,
t2: Transducer<B, C>
): Transducer<A, C> =>
<R>(reducer: Reducer<C, R>) => t1(t2(reducer));
// Fused map + filter in single pass
const mapThenFilter = compose(
mapT(x => x * 2),
filterT(x => x > 10)
);
Complexity:
- Lazy operations: O(1) to create
- Force n elements: O(n)
- Fusion: Reduces constant factor, same Big-O
5. Implementation Guide
5.1 Development Environment Setup
mkdir lazy-streams && cd lazy-streams
npm init -y
npm install --save-dev typescript ts-node jest @types/jest ts-jest
npx tsc --init
mkdir src tests benchmarks
5.2 Project Structure
lazy-streams/
โโโ src/
โ โโโ lazy/
โ โ โโโ lazy.ts # Lazy<T> implementation
โ โ โโโ index.ts
โ โโโ list/
โ โ โโโ types.ts # LazyList type
โ โ โโโ constructors.ts # cons, range, iterate, etc.
โ โ โโโ operations.ts # map, filter, take, etc.
โ โ โโโ index.ts
โ โโโ transducers/
โ โ โโโ types.ts # Transducer types
โ โ โโโ core.ts # mapT, filterT, etc.
โ โ โโโ compose.ts # Composition utilities
โ โ โโโ index.ts
โ โโโ integration/
โ โ โโโ iterators.ts # To/from iterators
โ โ โโโ arrays.ts # To/from arrays
โ โโโ index.ts # Public API
โโโ tests/
โ โโโ lazy.test.ts
โ โโโ list.test.ts
โ โโโ transducers.test.ts
โ โโโ infinite.test.ts
โโโ benchmarks/
โ โโโ fusion-benchmark.ts
โโโ package.json
5.3 Implementation Phases
Phase 1: Lazy Values (1-2 days)
Goals:
- Implement memoized thunks
- Test memoization behavior
Tasks:
- Create
Lazy<T>interface withisEvaluatedandforce() - Implement
lazy(thunk)factory with memoization - Implement
map(lazy, fn)for lazy values - Test that evaluation happens only once
Checkpoint:
let count = 0;
const expensive = lazy(() => { count++; return 42; });
expect(expensive.isEvaluated).toBe(false);
expect(count).toBe(0);
expect(expensive.force()).toBe(42);
expect(count).toBe(1);
expect(expensive.force()).toBe(42);
expect(count).toBe(1); // Not recomputed!
Phase 2: Lazy List Basics (2-3 days)
Goals:
- Define LazyList type
- Implement constructors
- Implement basic operations
Tasks:
- Define
NilandCons<A>types - Implement
nil,cons(head, tail)constructors - Implement
range(start, end?)- infinite if no end - Implement
iterate(seed, fn)- repeated application - Implement
repeat(value)- infinite repetition - Implement
take(n)andtoArray()
Checkpoint:
const nums = range(0); // Infinite!
expect(take(5)(nums)).toEqual([0, 1, 2, 3, 4]);
const powers = iterate(1, x => x * 2);
expect(take(5)(powers)).toEqual([1, 2, 4, 8, 16]);
Phase 3: Lazy Operations (3-4 days)
Goals:
- Implement map, filter, flatMap
- Implement take/drop variants
- Implement zip operations
Tasks:
- Implement
map(fn)- lazy transformation - Implement
filter(pred)- lazy filtering - Implement
flatMap(fn)- lazy map + flatten - Implement
takeWhile(pred)anddropWhile(pred) - Implement
zip(other)andzipWith(fn, other) - Implement
concat(other)- lazy concatenation
Checkpoint:
const fibs = iterate([0, 1], ([a, b]) => [b, a + b]).map(([a]) => a);
expect(fibs.filter(x => x % 2 === 0).take(5).toArray())
.toEqual([0, 2, 8, 34, 144]);
Phase 4: Transducers & Fusion (2-3 days)
Goals:
- Implement transducer pattern
- Enable fusion of operations
- Benchmark performance
Tasks:
- Define
Transducer<A, B>type - Implement
mapT,filterT,takeT - Implement
composefor transducers - Create
transducefunction to apply to streams - Benchmark fused vs unfused operations
Checkpoint:
const xform = compose(
mapT(x => x * 2),
filterT(x => x > 5),
takeT(3)
);
const result = transduce(xform, [], [1, 2, 3, 4, 5, 6, 7, 8]);
expect(result).toEqual([6, 8, 10]);
Phase 5: Integration & Polish (2-3 days)
Goals:
- Iterator integration
- Generator support
- Documentation and examples
Tasks:
- Implement
fromIterator(iter) - Implement
toIterator()method - Make LazyList iterable (
[Symbol.iterator]) - Create comprehensive examples
- Add JSDoc documentation
- Performance benchmarks
Checkpoint:
// Generator integration
function* gen() { yield 1; yield 2; yield 3; }
const fromGen = LazyList.fromIterator(gen());
// Iterable
for (const x of range(0, 5)) {
console.log(x); // 0, 1, 2, 3, 4
}
5.4 Key Implementation Decisions
| Decision | Options | Recommendation | Rationale |
|---|---|---|---|
| List representation | Class vs Object | Object (discriminated union) | More FP-style |
| Tail sharing | Yes vs No | Yes | Memory efficiency |
| Stack safety | Recursion vs Iteration | Trampolined for deep ops | Avoid overflow |
| Memoization | Always vs Optional | Always for Lazy | Correct semantics |
6. Testing Strategy
6.1 Test Categories
| Category | Purpose | Examples |
|---|---|---|
| Memoization | Thunks evaluated once | Lazy value caching |
| Operations | Correct transformations | map, filter results |
| Infinite | Handles infinite streams | take from infinite |
| Fusion | Performance improvement | Benchmark comparisons |
6.2 Critical Test Cases
- Memoization Works: ```typescript test(โlazy value is computed exactly onceโ, () => { let computeCount = 0; const lz = lazy(() => { computeCount++; return โresultโ; });
lz.force(); lz.force(); lz.force();
expect(computeCount).toBe(1); });
2. **Lazy Operations Are Lazy**:
```typescript
test('map does not evaluate until forced', () => {
let mapCalled = 0;
const list = range(0)
.map(x => { mapCalled++; return x * 2; });
expect(mapCalled).toBe(0);
list.take(3).toArray();
expect(mapCalled).toBe(3); // Only 3 calls, not infinite!
});
- Infinite Streams Work:
test('can work with infinite streams', () => { const primes = range(2).filter(isPrime); expect(primes.take(5).toArray()).toEqual([2, 3, 5, 7, 11]); }); - Fusion Reduces Passes: ```typescript test(โfused operations make single passโ, () => { let passCount = 0; const counting = mapT(x => { passCount++; return x; });
const xform = compose( counting, mapT(x => x * 2), filterT(x => x > 5) );
transduce(xform, [], [1, 2, 3, 4, 5]); expect(passCount).toBe(5); // Not 15 (3 operations ร 5 elements) });
### 6.3 Test Data
```typescript
// Finite test lists
const finite = from([1, 2, 3, 4, 5]);
const empty = nil;
const single = cons(42, lazy(() => nil));
// Infinite generators
const naturals = range(0);
const ones = repeat(1);
const fibs = iterate([0, 1], ([a, b]) => [b, a + b]).map(([a]) => a);
// Edge cases
const veryLong = range(0, 1_000_000);
7. Common Pitfalls & Debugging
7.1 Frequent Mistakes
| Pitfall | Symptom | Solution |
|---|---|---|
| Forgetting to memoize | Same computation repeated | Use memoizing lazy() |
| Stack overflow on deep lists | Crash | Use trampolining |
| Evaluating unnecessarily | Performance issues | Check lazy semantics |
| Memory leaks from holding head | Out of memory | Donโt hold refs to consumed elements |
7.2 Debugging Strategies
// Debug lazy evaluation
const trace = <A>(label: string) => (list: LazyList<A>): LazyList<A> => {
if (list._tag === 'Nil') {
console.log(`${label}: Nil`);
return nil;
}
console.log(`${label}: Cons(${list.head}, ...)`);
return cons(list.head, lazy(() => trace(label)(list.tail.force())));
};
// Usage
range(0, 10)
.map(x => x * 2)
.pipe(trace('after map'))
.take(3);
// Logs: "after map: Cons(0, ...)"
// "after map: Cons(2, ...)"
// "after map: Cons(4, ...)"
7.3 Performance Traps
- Holding head references: Prevents garbage collection
- No fusion when using methods: Convert to transducers for fusion
- Repeated traversal: Memoize or convert to array if needed multiple times
8. Extensions & Challenges
8.1 Beginner Extensions
- head/tail methods: Safe accessors returning Maybe
- length method: Count elements (finite only)
- reverse: Reverse finite list
8.2 Intermediate Extensions
- Parallel take: Use Promise.all for IO-bound operations
- Chunk: Group elements into sub-lists
- Interleave: Alternate between two streams
8.3 Advanced Extensions
- Async streams: Handle Promise-producing operations
- Backpressure: Handle producer/consumer speed mismatch
- Pull-based Observable: Bridge to reactive programming
9. Real-World Connections
9.1 Industry Applications
- JavaScript Generators: Built-in lazy sequences
- RxJS Observables: Lazy push-based streams
- Node Streams: Lazy IO processing
- Spark RDDs: Lazy distributed transformations
9.2 Related Open Source Projects
- transducers-js: https://github.com/cognitect-labs/transducers-js
- Ramda transducers: https://ramdajs.com/docs/#transduce
- IxJS: https://github.com/ReactiveX/IxJS - Iterable extensions
9.3 Interview Relevance
- โImplement lazy evaluationโ: Direct application
- โProcess infinite dataโ: Show stream approach
- โOptimize map/filter chainsโ: Show fusion
10. Resources
10.1 Essential Reading
- โWhy Functional Programming Mattersโ by John Hughes - Lazy evaluation section
- โHaskell Programming from First Principlesโ Ch. 27 - Non-strictness
- โFunctional Programming in JavaScriptโ by Luis Atencio - Lazy evaluation chapter
10.2 Video Resources
- โGenerators and Iteratorsโ - Fun Fun Function (YouTube)
- โTransducersโ - Rich Hickey (YouTube)
10.3 Tools & Documentation
- MDN Iterators: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
- Transducers Explained: https://clojure.org/reference/transducers
10.4 Related Projects in This Series
- Previous Project: P05 - JSON Parser
- Next Project: P07 - IO Monad - Effect handling
11. Self-Assessment Checklist
Before considering this project complete, verify:
Understanding
- I can explain eager vs lazy evaluation
- I understand how thunks delay computation
- I can explain stream fusion and why it helps
- I understand memory implications of lazy structures
Implementation
- Lazy values memoize correctly
- Infinite streams donโt crash
- Operations are properly lazy
- Transducers compose and fuse
- Iterator integration works
Growth
- I can recognize when lazy evaluation helps
- I understand connection to generators
- I can apply these concepts in production code
12. Submission / Completion Criteria
Minimum Viable Completion:
Lazy<T>with memoizationLazyList<T>with map, filter, take- Infinite range working
- Basic tests passing
Full Completion:
- All operations implemented
- Transducer fusion working
- Iterator integration
- Comprehensive tests
- Performance benchmarks showing fusion benefit
Excellence (Going Above & Beyond):
- Async stream support
- Published to npm
- Comparison with existing libraries
- Memory profiling
This guide was generated from FUNCTIONAL_PROGRAMMING_TYPESCRIPT_LEARNING_PROJECTS.md. For the complete learning path, see the parent directory.