Linear Algebra Learning Projects - Deep Dive Series
Linear Algebra Learning Projects - Deep Dive Series
Master linear algebra by building systems where matrices, vectors, and transformations arenโt abstractionsโtheyโre the actual machinery.
This directory contains comprehensive, expanded guides for each project in the Linear Algebra Learning Projects curriculum. Each guide provides everything you need to deeply understand both the theory and implementation.
Learning Philosophy
Linear algebra is the mathematics of transformations and spaces. Itโs the language computers use to manipulate graphics, train AI, process signals, and simulate physics. These projects are designed so that you cannot complete them without internalizing the core conceptsโthe math IS the implementation.
The Progression
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ LINEAR ALGEBRA MASTERY PATH โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ FOUNDATION โ
โ โโโโโโโโโ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ P01: 3D RENDERER โ โ
โ โ โข Vectors as coordinates โ โ
โ โ โข Transformation matrices (rotation, scale, translation) โ โ
โ โ โข Matrix composition โ โ
โ โ โข Projection and homogeneous coordinates โ โ
โ โ โข Change of basis (camera transforms) โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โผ โ
โ DECOMPOSITION & STRUCTURE โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ P02: SVD IMAGE COMPRESSION โ โ
โ โ โข Matrices as data โ โ
โ โ โข Singular Value Decomposition โ โ
โ โ โข Eigenvalues/eigenvectors intuition โ โ
โ โ โข Low-rank approximation โ โ
โ โ โข Information content and rank โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโ โ
โ โผ โผ โผ โ
โ APPLICATIONS (choose your path) โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โ
โ โ P03: NEURAL NET โ โ P04: PHYSICS โ โ P05: RECOMMENDERโ โ
โ โ โ โ โ โ โ โ
โ โ โข Matrix-vector โ โ โข Solving Ax=b โ โ โข Matrix factor-โ โ
โ โ multiplicationโ โ โข Projections โ โ ization โ โ
โ โ โข Gradients & โ โ โข Null spaces โ โ โข Sparse matricesโ โ
โ โ transposes โ โ โข Least squares โ โ โข Vector similar-โ โ
โ โ โข Optimization โ โ โข Conditioning โ โ ity โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โ
โ โ โ โ โ
โ โโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโ โ
โ โผ โ
โ CAPSTONE โ
โ โโโโโโโโ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ P06: RAY TRACER WITH GLOBAL ILLUMINATION โ โ
โ โ โข All vector operations โ โ
โ โ โข All matrix operations โ โ
โ โ โข Solving systems of equations โ โ
โ โ โข Orthonormal basis construction โ โ
โ โ โข Everything synthesized into photorealistic rendering โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ

Project Index
| # | Project | Difficulty | Time | Core Concepts |
|---|---|---|---|---|
| P01 | Software 3D Renderer | Intermediate | 2-3 weeks | Transformations, matrices, projections |
| P02 | SVD Image Compression | Intermediate | 1-2 weeks | Decomposition, eigenvalues, rank |
| P03 | Neural Network from Scratch | Intermediate-Advanced | 2-3 weeks | Matrix multiplication, gradients |
| P04 | Physics Simulation | Advanced | 3-4 weeks | Systems of equations, projections |
| P05 | Recommendation Engine | Intermediate | 1-2 weeks | Factorization, similarity |
| P06 | Ray Tracer (Capstone) | Advanced | 1-2 months | Complete synthesis |
Core Concepts Map
Each project teaches specific linear algebra concepts. Hereโs what youโll master:
Vectors & Basic Operations
- What they are: Ordered lists of numbers representing points or directions in space
- Learned in: P01 (coordinates), P04 (physical state), P06 (rays)
- Key operations: Addition, scalar multiplication, dot product, cross product
Matrices & Transformations
- What they are: Transformation machines that map vectors to vectors
- Learned in: P01 (rotation/scale/projection), P03 (layer weights)
- Key operations: Matrix-vector multiplication, matrix-matrix multiplication
Matrix Decompositions
- What they are: Breaking matrices into simpler, meaningful pieces
- Learned in: P02 (SVD), P05 (factorization)
- Key types: LU, QR, SVD, Eigendecomposition
Systems of Linear Equations
- What they are: Finding vectors that satisfy multiple constraints
- Learned in: P04 (constraint solving), P06 (ray-object intersection)
- Key methods: Gaussian elimination, iterative solvers
Eigenvalues & Eigenvectors
- What they are: The โnatural axesโ of a transformation
- Learned in: P02 (singular values), P03 (weight initialization)
- Key insight: Directions that only scale under transformation
Recommended Learning Order
Path 1: Graphics Focus
P01 โ P02 โ P06
Best for: Game developers, graphics programmers, visualization enthusiasts
Path 2: Machine Learning Focus
P01 โ P02 โ P03 โ P05
Best for: ML engineers, data scientists, AI researchers
Path 3: Simulation Focus
P01 โ P04 โ P06
Best for: Physics engine developers, scientific computing, robotics
Path 4: Complete Mastery
P01 โ P02 โ P03 โ P04 โ P05 โ P06
Best for: Those who want comprehensive linear algebra mastery
Essential Resources
Primary Learning Materials
- 3Blue1Brown: Essence of Linear Algebra (YouTube) - Geometric intuition
- โComputer Graphics from Scratchโ by Gabriel Gambetta - Graphics applications
- โMath for Programmersโ by Paul Orland - Programming-focused approach
Reference Materials
- โLinear Algebra Done Rightโ by Sheldon Axler - Rigorous theory
- โNumerical Recipes in Cโ by Press et al. - Numerical implementation
- โPhysically Based Renderingโ by Pharr & Humphreys - Advanced ray tracing
Tools
- Python + NumPy: Quick prototyping and verification
- C: Deep understanding through manual implementation
- GeoGebra: Visualizing transformations
- Desmos: Plotting and exploration
How to Use These Guides
Each expanded project guide contains:
- Learning Objectives - What youโll understand after completion
- Theoretical Foundation - Deep enough to learn without other sources
- Project Specification - Exactly what youโre building
- Solution Architecture - Design guidance without spoiling implementation
- Phased Implementation - Step-by-step progression with checkpoints
- Testing Strategy - How to verify your implementation
- Common Pitfalls - Mistakes to avoid
- Extensions - Ways to deepen your learning
- Real-World Connections - Industry applications
- Self-Assessment - Verify your understanding
Getting Started
- Choose your path from the recommended orders above
- Start with P01 (required for all paths)
- Watch 3Blue1Brown Episode 1 before coding
- Read the theoretical foundation in your project guide
- Build incrementally - one concept at a time
- Verify understanding - can you explain each concept without notes?
Remember: The goal isnโt to finish projects quicklyโitโs to reach the point where you see matrices as transformations, feel eigenvectors as natural axes, and think in terms of vector spaces.
Last updated: 2024