Linear Algebra Learning Projects - Deep Dive Series

Linear Algebra Learning Projects - Deep Dive Series

Master linear algebra by building systems where matrices, vectors, and transformations arenโ€™t abstractionsโ€”theyโ€™re the actual machinery.

This directory contains comprehensive, expanded guides for each project in the Linear Algebra Learning Projects curriculum. Each guide provides everything you need to deeply understand both the theory and implementation.


Learning Philosophy

Linear algebra is the mathematics of transformations and spaces. Itโ€™s the language computers use to manipulate graphics, train AI, process signals, and simulate physics. These projects are designed so that you cannot complete them without internalizing the core conceptsโ€”the math IS the implementation.

The Progression

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                        LINEAR ALGEBRA MASTERY PATH                          โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                                             โ”‚
โ”‚  FOUNDATION                                                                 โ”‚
โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€                                                                  โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚  P01: 3D RENDERER                                                    โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Vectors as coordinates                                            โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Transformation matrices (rotation, scale, translation)           โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Matrix composition                                                โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Projection and homogeneous coordinates                           โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Change of basis (camera transforms)                              โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                              โ”‚                                              โ”‚
โ”‚                              โ–ผ                                              โ”‚
โ”‚  DECOMPOSITION & STRUCTURE                                                  โ”‚
โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€                                                  โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚  P02: SVD IMAGE COMPRESSION                                          โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Matrices as data                                                  โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Singular Value Decomposition                                      โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Eigenvalues/eigenvectors intuition                               โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Low-rank approximation                                           โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Information content and rank                                     โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                              โ”‚                                              โ”‚
โ”‚              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                              โ”‚
โ”‚              โ–ผ               โ–ผ               โ–ผ                              โ”‚
โ”‚  APPLICATIONS (choose your path)                                            โ”‚
โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€                                            โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”               โ”‚
โ”‚  โ”‚ P03: NEURAL NET โ”‚ โ”‚ P04: PHYSICS    โ”‚ โ”‚ P05: RECOMMENDERโ”‚               โ”‚
โ”‚  โ”‚                 โ”‚ โ”‚                 โ”‚ โ”‚                 โ”‚               โ”‚
โ”‚  โ”‚ โ€ข Matrix-vector โ”‚ โ”‚ โ€ข Solving Ax=b  โ”‚ โ”‚ โ€ข Matrix factor-โ”‚               โ”‚
โ”‚  โ”‚   multiplicationโ”‚ โ”‚ โ€ข Projections   โ”‚ โ”‚   ization       โ”‚               โ”‚
โ”‚  โ”‚ โ€ข Gradients &   โ”‚ โ”‚ โ€ข Null spaces   โ”‚ โ”‚ โ€ข Sparse matricesโ”‚              โ”‚
โ”‚  โ”‚   transposes    โ”‚ โ”‚ โ€ข Least squares โ”‚ โ”‚ โ€ข Vector similar-โ”‚              โ”‚
โ”‚  โ”‚ โ€ข Optimization  โ”‚ โ”‚ โ€ข Conditioning  โ”‚ โ”‚   ity           โ”‚               โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜               โ”‚
โ”‚              โ”‚               โ”‚               โ”‚                              โ”‚
โ”‚              โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                              โ”‚
โ”‚                              โ–ผ                                              โ”‚
โ”‚  CAPSTONE                                                                   โ”‚
โ”‚  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€                                                                   โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚  P06: RAY TRACER WITH GLOBAL ILLUMINATION                           โ”‚   โ”‚
โ”‚  โ”‚  โ€ข All vector operations                                            โ”‚   โ”‚
โ”‚  โ”‚  โ€ข All matrix operations                                            โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Solving systems of equations                                     โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Orthonormal basis construction                                   โ”‚   โ”‚
โ”‚  โ”‚  โ€ข Everything synthesized into photorealistic rendering             โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                                                                             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Linear Algebra Mastery Path


Project Index

# Project Difficulty Time Core Concepts
P01 Software 3D Renderer Intermediate 2-3 weeks Transformations, matrices, projections
P02 SVD Image Compression Intermediate 1-2 weeks Decomposition, eigenvalues, rank
P03 Neural Network from Scratch Intermediate-Advanced 2-3 weeks Matrix multiplication, gradients
P04 Physics Simulation Advanced 3-4 weeks Systems of equations, projections
P05 Recommendation Engine Intermediate 1-2 weeks Factorization, similarity
P06 Ray Tracer (Capstone) Advanced 1-2 months Complete synthesis

Core Concepts Map

Each project teaches specific linear algebra concepts. Hereโ€™s what youโ€™ll master:

Vectors & Basic Operations

  • What they are: Ordered lists of numbers representing points or directions in space
  • Learned in: P01 (coordinates), P04 (physical state), P06 (rays)
  • Key operations: Addition, scalar multiplication, dot product, cross product

Matrices & Transformations

  • What they are: Transformation machines that map vectors to vectors
  • Learned in: P01 (rotation/scale/projection), P03 (layer weights)
  • Key operations: Matrix-vector multiplication, matrix-matrix multiplication

Matrix Decompositions

  • What they are: Breaking matrices into simpler, meaningful pieces
  • Learned in: P02 (SVD), P05 (factorization)
  • Key types: LU, QR, SVD, Eigendecomposition

Systems of Linear Equations

  • What they are: Finding vectors that satisfy multiple constraints
  • Learned in: P04 (constraint solving), P06 (ray-object intersection)
  • Key methods: Gaussian elimination, iterative solvers

Eigenvalues & Eigenvectors

  • What they are: The โ€œnatural axesโ€ of a transformation
  • Learned in: P02 (singular values), P03 (weight initialization)
  • Key insight: Directions that only scale under transformation

Path 1: Graphics Focus

P01 โ†’ P02 โ†’ P06

Best for: Game developers, graphics programmers, visualization enthusiasts

Path 2: Machine Learning Focus

P01 โ†’ P02 โ†’ P03 โ†’ P05

Best for: ML engineers, data scientists, AI researchers

Path 3: Simulation Focus

P01 โ†’ P04 โ†’ P06

Best for: Physics engine developers, scientific computing, robotics

Path 4: Complete Mastery

P01 โ†’ P02 โ†’ P03 โ†’ P04 โ†’ P05 โ†’ P06

Best for: Those who want comprehensive linear algebra mastery


Essential Resources

Primary Learning Materials

  1. 3Blue1Brown: Essence of Linear Algebra (YouTube) - Geometric intuition
  2. โ€œComputer Graphics from Scratchโ€ by Gabriel Gambetta - Graphics applications
  3. โ€œMath for Programmersโ€ by Paul Orland - Programming-focused approach

Reference Materials

  1. โ€œLinear Algebra Done Rightโ€ by Sheldon Axler - Rigorous theory
  2. โ€œNumerical Recipes in Cโ€ by Press et al. - Numerical implementation
  3. โ€œPhysically Based Renderingโ€ by Pharr & Humphreys - Advanced ray tracing

Tools

  • Python + NumPy: Quick prototyping and verification
  • C: Deep understanding through manual implementation
  • GeoGebra: Visualizing transformations
  • Desmos: Plotting and exploration

How to Use These Guides

Each expanded project guide contains:

  1. Learning Objectives - What youโ€™ll understand after completion
  2. Theoretical Foundation - Deep enough to learn without other sources
  3. Project Specification - Exactly what youโ€™re building
  4. Solution Architecture - Design guidance without spoiling implementation
  5. Phased Implementation - Step-by-step progression with checkpoints
  6. Testing Strategy - How to verify your implementation
  7. Common Pitfalls - Mistakes to avoid
  8. Extensions - Ways to deepen your learning
  9. Real-World Connections - Industry applications
  10. Self-Assessment - Verify your understanding

Getting Started

  1. Choose your path from the recommended orders above
  2. Start with P01 (required for all paths)
  3. Watch 3Blue1Brown Episode 1 before coding
  4. Read the theoretical foundation in your project guide
  5. Build incrementally - one concept at a time
  6. Verify understanding - can you explain each concept without notes?

Remember: The goal isnโ€™t to finish projects quicklyโ€”itโ€™s to reach the point where you see matrices as transformations, feel eigenvectors as natural axes, and think in terms of vector spaces.


Last updated: 2024